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INVESTIGATION OF THE STABILITY OF SOME EXPLICIT DIFFERENCE

SCHEMES .IN THE INTEGRATION OF SAINT-VENANT

EQUATIONS®

V.I. Koren'

Computations of the unsteady motion of water in rivers are based on the integration of a

system of Saint-Venant equations:
|

du dv . _0H . wo? Co
- + UTX— t g-a—x— + sign (v) v gin=0
. 1)
Ow au duw (
- ~ - =0
ar T TUox

where v is flow velocity, averaged over the cross section; H is the depth of water; K is the
discharge rate per unit area; ipis the slope of the bottom; wis the cross sectional area; and g
is the acceleration of gravity. Note that this system corresponds to the case when there is no

lateral.inflow along the river. By v
Many investigators have demonstrated that the magnitude of the inertial terms (E, v 5;{—)

in the equation of motion [first equation of system (1)] are substantially smaller, as a rule,
than any of the other terms of this equation and, therefore, they are frequently omitted and a

simpler system is used:

_ .8 —oH

Q 5|gn(ln ?;)NK] in 'ﬂ—\ 2
dw , 69 _g ®
w T

Systems (1) and (2) have no simple analytical solutions and, therefore, numerical methods
are used for their integration. To provide for computational stability of the solutions of the
difference equations we must satisfy some relationships between the steps of the difference grid
(we shall examine only explicit schemes here). These relationships are determined mainly by
the type of differential equations and also by the type of difference scheme selected.

System (1) belongs to the type of hyperbolic partial differential equations. We know from
(3] that to provide for computational stability in the numerical integration of such equations by
means of explicit schemes it is necessary to satisfy the Courant-Friedrichs-Lewy condition:

cdt
< <" (3)

here ¢ ig the rate of propagation of small perturbations in a moving stream [for system (1)

¢=vEJgH ]
. Let us demonstrate that this condition is ne
integration of system (1). Assuming the channel to be prismatic and ass

cessary but not sufficient in the numerical
uming an exponential
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X

law of variation of K with depth (K = %Hz), we linearize system (1) with respect to steady floy

with the characteristics H0 and u,:
_%’;_-i-uo%_ +gdh 4 2 Gt — 2B A= 0
' dn on
ot +Hegs o gy =Y
gio gi 0
Here we have introduced the notations G = 60 =Fgo U and h represent the deviations frop
u, and HO respectively. 0

Since (4) is a system of linear differential equations with constant coefficients that can
be solved in the form of Fourier series, stability can be investigated according to the theory of
J. vonNeumann [4].

Let us examine two difference schemes that are extensively used in computations of un-
steady motion: the Lax scheme

! m i m
P (T AR o LT =1 (5)

o ! of -
ot Af " Tdx 24x

and the central checkerboard scheme

o mat - i_-n"f'n—fn'f-(' (6)

‘where f is any differentiable function.
Having represented system (4) in difference form according to the Lax scheme, we find it
conversion matrix [4]:

(1—-2 GyAt)cosf —
R4 ) oy

isinf

Bl iing  whd feos - gae
Ax Ax

(7
ising cos;’x—uALA_ﬁisinﬁ

Here 8 = aAx, where « is a real wave number.
To provide for mathematical stability it is necessary that any eigenvalue of this matrix
satisfy the von Neumann condition

N1 +0 (a0

for any value of the wave number. Let us determine the eigenvalues from the characteristic -
equation of the conversion matrix (7): N ’

R{At, ) —NEl=0, t)

where E is a unit matrix
Solving (9) for A we obtain

Ma=(1— nAl)cosﬂ-”_&’i_iisin,’ii
i ]fc..Atcosfx)a ant sin a) — - toat ’:’;“ I sin 28

0
taking the absolute values of the eigenvalues, we can rewrite (10) as

where ¢y = YgH_. By letting At and Ax approach zero in such a way that At/Ax = const and

(tg F o)Al

' A ’=1—~[1—(.__T)’] sln?B 40 (A8),
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by finding a bound for the right-hand member of the equation (replacing the sine in it by

ith it Then, ) o o
respect to steady floy, - ity)s We obtain the stability condition in the sense of (8):
(. Feadl o ) (12)
Ax ‘
(¢ & e, We have the Courant-Friedrichs-Lewy stability condition for hyperbolic equations.

But actually we run the risk that t may be insufficiently restricted by inequality (12), since
it was obtained for the limiting case as At and Ax approach zero. However, for practical pur-
will happen in the limit as &t — 0 and Ax — 0, but also

. o ses we are interested not only in what
‘esent the deviations from in what will happen for a point grid with finite At and Ax, which is used in numerical integration.
Therefore, to obtain a criterion of'computational stability let us require that the amplitudes of
t coefficients that can - the solutions of the finite-difference equations not increase with time, i.e., that the inequality
ccording to the théor
y of <1 (13)

in computations of un-
be satisfied.

Omitting in (10) the term containing 90 (since usually 60 <« GO) and assuming that

(6 (_C.O_AL sin 3 )’ > (GnAt cos ﬁ)u.
Ax

we obtain the following expression for the absolute values of eigenvalues:

(6) ’ Mo ’:[1—2(;‘0A111(G(,Az)2]—

—{[l—QGUAti‘((GuAI)ﬂ]— (14)

- [eE et s

Ax

e Lax scheme, we find its

i

%o

where y =—.
. CO

Equation (14) is approximate since it was assumed that

V@A_‘f_ sin 5)2——-(GuL\tcos ﬁ)az

isinp

m

envalue of this matrix

(G A Lcos f)? i (15)
9 6B8f ging
bx

~

~ LB g
Ax

om the characteristic
In what follows, we shall neglect the square ofthe second term in the right-hand member.

For inequality (13) to be fulfilled it is obviously necessary that, in addition to the Courant-
Friedrichs-Lewy condition, the following inequality also be satisfied:

|71 (CoAt)2+2GaAt <2, (16)
By solving (16) for At we obtain
- aeYTERI=L (17)

111 Go

-

at At/Ax = const and, Without going through the detailed computations here, let us only note that when

(GuAlvc'os fi)ﬂ > (C‘LA\: sin ;3)2 . fn‘

restriction is not reinforced. | .
Thus, the maximum possible magnit
1€ registance G0 and the ratio of flow veloc

ude of the time step is determined by the magnitude of
ity to the rate of propagation Qf small perturbations
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Y. Ltis obviou's, that in the absence of friction, restriction (17
do not allow for supercritical flows, the magnitude of |y | m
= 1. Accordingly, At also has two extreme values:

} is removed (At < @), If we
ay vary within the limits 0 < [y

1
At ——— =
< o for =0
V- (
arg¥izl for [y|= 1
Gy

The first inéquality in (18) corresponds to the stability criterion obtained in [1] for the
simplified equation:

du
—_ =0
37 + 2 Gou =0);

hecessary that, in addition to satisfying the Courant-Friedrichs
into account the size of the step of the difference grid according
was obtained for a linearized system and, therefore

can be carried over only as an approximation forat
the difference grid.

It should be noted that, generally, in computations of unsteady motion inequality (17) is
automatically satisfied when condition (12) is fulfilled. But for small mountain rivers, when we
must select a small distance step, At, determined from inequality (17), may prove to be
smaller than required by the Courant-Friedrichs—Lewy condition.

Let us examine the possibility of removing restriction (17). To this end, let us approxi-
mate flow velocity inthe friction term by the following relationship:

to inequality (17). The latter
» in the case of nonlinear equations (1) it
entative estimate of the allowable step of

u=3sumr 4 % (1 —%) () + ™,

(20)
where 0 =6 =< 1,

Since the eriterion of stability (17) is determined mainly by the friction term (equal to
.2Ggu in the linearized form), let us consider model equation (19). Having substitnted the deriv:

tive in it according to the Lax scheme and using relationship (20), we find the convers ion matris
(in this case it will consist of a single element):

= |1=2G.s¢e (1 —3) 21).
R(At,a)_'w cosﬁ’. . (21).

Its eigenvalue is

2C,A¢
=[1—_<Yll _ .
A [ 1+2GUA16]COSﬁ

From (22) it follows that for 6 = 1/2 the quantity A lies inside a unit circle or at its
boundary for any time step of the difference grid, i.e., the restriction (17) is removed. If,
however, 0 =6 =< 1/2, to provide for stability we must satisfy the inequality

1 .
Ats\GO = (23

which for 6 =0 corresponds to the stability eriterion (18), examined earlier (for y =0).

By analogy with the Lax scheme, let us investigate the stability of the central checkerb
scheme. We limit ourselves to the examination of the simplified'equation (19), since, as dem?
strated above, the additional condition of stability, obtained for the complete system, praeti
ly coincides with the analogous condition corresponding to the model equation of motion.”
us represent equation (19) in difference form according to the central checkerboard sche:

u’",'f‘:u’";l—tiGoAt'uu m’-rl ‘——4‘GoAt (l - a).l{m;l". PR

it
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To reduce this three-layer problem to a two-layer problem, let us introduce a new de-

il @, Then we obtain the following system:

| (At < =), If we

the limits 0 = [y s, ent variable [4]: w

pend
Il'";'lz[l— 4 Gyt ] o™
T3+4G,ate| " (25)
(18) w"’;‘;‘ = u,':'
» Its conversion matrix will be
ned in [1] for the
0 | 408t
VT
R(ALa)= P+aGedes | (26)
(19) I 0

is negligibly small Let us find the eigenvalues

r to this scheme it is = 4Gadt
Ma=# ]/ 1— 50,
. 7 Gans

ition, we must take
ty (17). The latter

(27

it follows that, by analogy with the Lax scheme, when 6 = 1/2 stability is ensured for

ar equations (1) it From (27)

> allowable step of s any At. I, however, & < 1/2, it is necessary to satisfy inequality

inequality (17) is ok 1

ainrivers, when we - M squ— - (28)
d is

1y prove to be
oard scheme the bound on the time step of the difference gri

{.e., for the central checkerb
cut in half as compared with the Lax scheme.
It should be noted that in approximating the friction term (Gou) by expressions Gou =
=1/9 m m - m . .
1/2 GO (um_1 + un—l) and Gou GouIl there is the risk that the central checkerboard scheme

will be unstable for any At = 0, since the eigenva

respectively equal to
Mg = — GyAtcosp+ Y/ (Gsatcosf)r+ 1 :

end, let us approxi-

{20)
lues of the conversion matrix in this case are

on term (equal to N
substituted the deriv (29)

the conversion matrix
and

Mo=—2G AtV (2GAN +1:
: From (29) it follows that in both cases one of the eigenvalues may not lie inside the unit
eircle for all At = 0.

Let us now pass t
Venant equations (2). We linearize it fo

o the investigation of the stability of the simplified system on Saint-

r the case of a prismatic channel:

Q 0ok

2h 1 0a _g

Et+5 ax

orresponding characteristics H0 and QO for

circle or at its

) is removed. If,

lity )
Here h and q are the deviations from the ¢

Meady motion; B is the width of the channel; % is’

onent in the relationship w= £(H).

System (30) can be reduced to a single equation:

the hydraulic index of the channel; and £ is

er (fory =0). & ‘
e central checke
19), since, as
ate’ system
ion of mot
skerboard schi PR , ‘

of _ . of _
W T ST —,0'

L la

":("}“LE)‘%:‘"_ T, % (30)

(31)




and f is the desired variable (h, q).
Equation (31) is parabolic with respect to the highest derivative with diffusion coefficient -

g. The term a g;f{- introduces wave properties and when a >> o the equation becomes hyperboli'c +

' Thus, system (30) is mixed in the general case. The result is that the conditions of computa
tional stability, corresponding both to parabolic and hyperbolic equations, cannot be extended
directly to the system in question.

Let us find the stability criterion of system (30) for its numerical integration according tq;
the-explicit scheme considered in [2]: ‘

ok - hm;:.l_h:z" dh - hn’:l - "Z'
o1 LY ' Tox Ax '
m m
o0 Tuel= 4,1 (32)
ox Ax

Having substituted (32) in (30) and having reduced the system of difference equations to a single
equation in h, we obtain

-1 adt 1Y
A “m("nil «/;n’fl) 5 ( h +”,.'i'1)
Axa "
\
Its conversion matrix will be
. 1 :
R(Ar,a)=’1_<‘;°fu’ sine £_ ¢ ‘:i‘ { sin § (34) -

From (34) it follows that to satisfy the von Neumann condition [4] we must satisfy the inequality k

AN -

o (35)

,JI -

i.e., we obtain the stability criterion characteristic for parabolic equations. If we require th
inequality (13) be satisfied, i.e., allow for the fact that At = 0, the stability criterion will be

20AF 2 adt \2
—_r. 1,
(Axﬂ ) +(2Ax) <

At < Azxﬂ IA -
2a adx
1
+(4a

For rivers, o >> a, as a rule, and, therefore, the role of the wave component in (37) is
small.

For small distance steps, condition (37) is much more stringent than the Courant-.
Friedrichs-Lewy criterion for the complete system (1). As Ax increases, this relationship
changes rapidly and the stability criterion (37) becomes less stringent than (12).

To determine the possibility of extending the stability criteria obtained to nonlinear e
tions, numerical experiments were performed for a broad range of variation of initial an
boundary conditions. Computations from the complete system (1) and from the simplified
tem (2) showed that conditions (17), (28), and (37) also remain valid for nonlinear equatio
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e equations to a single

METHOD OF FORECASTING ICE PHENOMENA IN RIVERS®

(33) = .
B i
N.A. Bagrov and A. P. Kukhto

ce phenomena in rivers are closely associated with geasonal variations in heat exchange
and with some hydrological factors. However, the domin-

in the atmosphere-water-ice system
ating role in all ice phenomena is undoubtedly played by the thermal process.
The characteristics of atmospheric circulation over a sufficiently vast area must be used
ag initial data in long-Tange forecasts of ice phenoma. In our opinion, sufficient account is not

always taken of these characteristics.
An attempt to forecast ice phenomena on the basis of a mor

of initial atmospheric processes is made here without allowance for the eff
factors in the first approximation.
The idea of using some objective circulation criteria f
There are some studies where various ""circulation indexes" are used as predictors 31.
1t is obvious, however, that atmospheric circulation over a vast area cannot be character-
lzed by a single quantity (be it the meridional index, the zonal index, oTr both). Therefore, for
an objective estimate of atmospheric circulation characteristics over a sufficiently vast area,
we believe it advisable to use 2 set of coefficients of the expansion of & meteorological field, in

particular the H5 00 (500-mb) field, in Chebyshev polynomials.
We know that the H500 field adequately describes the prevailing flow in the troposphere

and is used effectively by sy
tively complete absolute 500
of years.
The general theory and technique of ex
nomials are described in [1].

The Ay coefficients represent 50
8et of these indexes can describe with s
ghart and it can do it the more accurately,

For initial data we used the periodic charts of average Hgqqp values, as it was done in [4].
he data were taken at 117 points on 2 ntrapezoid" from 35° to 75°N (9 points) and from 30°W

0°E (13 points). Asa result, 47 coefficients Aij (1i=0,1, . 5:j=0,1, ...y 6) were ob-
ed for each chart, :

.h'e.main idea of
ttire initial information, taken ina system.of

i cients, the number of which is several times (
agation of Long SR T N L
i Gidrologiya), No. 2, 1967, pp. 22-28.

(34)

J

+ satisfy the inequality =
(35 e detailed, quantitative estimate
ect of hydrologic

or hydrological forecasts is not new.

ions. If we require that
ility criterion will be

r forecasting. Furthermore, rela-

noptic meteorologists in weathe
lable for a sufficiently long series

-mb topography charts are avai
pansion and meteorological fields in Chebyshev poly-
me generalized circulation indexes or parameters. A

ome degree of accuracy the circulation on any synoptic
the more complete is the set of indexes taken into

ve component in (37) is

han the Courant-.
ies, this relationship
han (12). i
-ained to nonlineaT &g
iation of initial &
rom the simplified

* nonlinear equa
- cal field is to substitute

an analytical representation of a meteorologi
discrete points, by relatively few expansion.”

4-10) smaller than the number of points. 7
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